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+ 0.00008 A. The value of the displacement appears to 
be larger below the Nrel temperature but it is not 
significantly greater than the accuracy of the measure- 
ments. Further, the displacement might reasonably be 
expected to increase as the temperature is reduced 
below the Nrel point, whereas the observed displace- 
ment showed no tendency to do so and in fact the 
room temperature value was about three times that 
obtained at - 102 °C. 

To investigate the broadening effect for a powdered 
chromium specimen the 310 reflexion for Cu Kct radia- 
tion was recorded with an X-ray diffractometer. The 
integral breadth of the re flexion was measured for 20 
recordings in a range (40 to 70°C) above the Nrel 
point, and below the Nrel point for 21 recordings in 
the range 15 to 40 °C and 6 in the range - 70 to - 40 °C. 
The mean values of the breadth for all three ranges 
lie within 0-8%, the values in the higher and lower 
ranges being slightly larger than the values in the 
middle range. This latter indicates that the small ob- 
served broadening is more likely to be due to slight 
thermal instability than to a splitting of the re flexion. 

The above results do not weight the argument in 
favour of the overall cubic symmetry of antiferro- 

magnetic chromium but together with the previous 
discussion they point to an upper limit for A, in the 
specimens examined, of about 10 -s, where A is defined 
in the relation a=c(1  +A) for the distorted structure. 

The  author wishes to thank Professor G.E. Bacon 
for helpful discussions throughout this work. 
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The triclinic mica polytype lOTc3 produces an X-ray diffraction pattern monoclinic in symmetry. It  
is now established that if a triclinic structure, with a metrically monoclinic lattice, is composed of two 
kinds of layer, one being an integral multiple, in thickness, of the other and each bearing twofold 
rotational symmetry, its diffraction pattern should assume a rigorously monoclinic symmetry. The 
term diffraction enhancement of symmetry is proposed for phenomena of this kind. Some triclinic mica 
polytypes, though not in conformity with the above conditions, still give rise to diffraction patterns 
monoclinic in a very good approximation, and these cases are specified as quasi-enhancement. If the 
X-ray diffraction pattern of a crystal bears, only in part, a symmetry higher than that of the crystal, 
the case is designated partial enhancement. 

Introduction 

It has often been observed that some sets of X-ray re- 
flections from a crystal exhibit, besides the centrosym- 
metry due to the Friedel law, a symmetry higher than 
that of the crystal. One of the notable examples is a 
case of triclinic wollastonite (Ito, 1950). It gives the 
b-axis rotation photograph in which spots on the even- 
order layer-lines are arranged, in intensity as well as 
position, quite symmetric against the zero layer. As far 
as these reflections are concerned, therefore, the pattern 
strictly assumes an appearance of that of a monoclinic 

symmetry, though those on the odd-order layer-lines 
betray that the symmetry of the crystal is in fact tri- 
clinic. Bolrite and monoclinic trinitrotoluene also ex- 
hibit features similar to the above in their X-ray pa t -  
terns, some sets of reflections being strictly cubic in 
the former in spite of its tetragonal symmetry and 
orthorhombic in the latter. 

These intricate phenomena have been dealt with by 
Ito (1950), who has given explanations of these based 
upon his theory of twinned space groups. In fact, in 
each of these examples, it has been confirmed experi- 
mentally that the crystal is a polysynthetic twin of a 
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certain unit that has within itself its own symmetry 
higher than the space-group symmetry of the whole 
scheme of the crystal structure. Let us imagine a tri- 
clinic crystal having hexagonal molecules of one kind 
arranged according to its crystal lattice. In this case, 
just as in those of hexamethylbenzene (Lonsdale, 1928, 
1929; Brockway & Robertson, 1939) and hexachloro- 
benzene (Lonsdale, 1931), there will in general be no 
special correlation between the molecular orientation 
and the crystal lattice, and accordingly the symmetry 
of the molecule will not render any direct influence 
upon the symmetry of the X-ray diffraction pattern in 
so far as the normal Bragg reflections are concerned. 
On the other hand, in every case of polysynthetic twins 
mentioned above, owing to the orientational relation 
inherent in twinning between twin operation and sym- 
metry of the unit, a certain correlation appears between 
the symmetry of the unit and the resulting twinned 
lattice, thus impressing the symmetry of the unit upon 
certain sets of reflections. 

During the course of recent investigations of a series 
of mica polytypes, however, one of us came across a 
case in which a triclinic polytype designated 10To3 pro- 
duces an X-ray diffraction pattern strictly monoclinic 
in its every aspect (Ross, Takeda & Wones, 1966). 
Since the structure of the polytype determined turned 
out to be triclinic in symmetry, we started an investiga- 
tion to ascertain whether it was at all possible for a 
triclinic structure to exhibit a diffraction pattern rigor- 
ously monoclinic in symmetry, and we found that not 
only is this indeed true for a certain type of layer struc- 
ture including the 10To3 mica polytype but also it is 
approximately realized in other mica polytypes such 
as the eight-layer ones to be discussed below. 

Theoretical considerations and diffraction 
enhancement of symmetry 

Suppose that a crystal structure is c'omposed of parallel 
layers of r kinds satisfying the conditions: 

(1) Every layer possesses a twofold rotational sym- 
metry whose axis is parallel to the layer and to a certain 
direction which is to be taken as the b axis of the crystal, 

(2) These layers are so juxtaposed that their respec- 
tive origins are arranged along a line perpendicular to 
the b axis. Therefore, if the e axis is taken parallel to 
this line and the a axis parallel to the layer and per- 

- - - ~  c s i n ~  

b 

I l . . . .  I , I . . . .  l:f . . . .  

Fig. 1. Example of the structure satisfying the four conditions 
in the text. Projection along the a axis. The thickness of 
each layer is an integral multiple of that of layer 1. Arrows 
show partial twofold axes. Dots along the bottom of layers 
indicate intervals of 1]M of the period along the direction 
perpendicular to the layers. 

pendicular to the b axis, a set of metrically monoclinic 
axes will be established in the structure, 

(3) There is, in the order of stacking of those layers, 
no symmetry other than the repetition according to the 
periodicity along the c axis, and 

(4) The thickness of any one of the kinds of layer 
is an integral multiple of the thickness of the thinnest 
kind. This condition includes the case in which the 
structure consists of layers of r kinds, but all of equal 
thickness. 

An example of the structure defined above is illus- 
trated in Fig. 1 in a projection along the a axis, where 
each of the layers denoted by 2 , 3 , . . .  r is an integral 
multiple, in thickness, of the layer denoted by 1. Al- 
though every layer has a twofold axis in the middle, 
owing to condition (3), the operations of the axis are 
effective only within a certain set of layers; these are 
therefore partial symmetry operations or 2-operations 
after the definitions by Dornberger-Schiff (1956, 1964), 
and are not qualified to be overall symmetry operations 
in the space group of the structure. Therefore, the sym- 
metry of the structure is triclinic in spite of its appar- 
ently monoclinic lattice. 

Now, let dl (x ,y , z ) ,dz (x ,y , z ) , . . ,  dr(x,y,z) be the 
electron-density functions for the respective layers, and 
Fl(u, v, w), Fz(u, v, w), . . . Fr(u, v, w), the corresponding 
Fourier transforms. Then, one of the latter, say 
Flo(u, v, w), is expressed by 

Fp(u, v, w) = Idp(x,y, z) exp 2z~i(ux + vy + wz)dV , 

where dV is the volume element at (x,y,z) in direct 
space. Because of the twofold rotational symmetry of 
the p-layer [condition (1)], F~(u,v, w) can be written as 

(. 

F~(u, v, w) -- 2 ~. d~(x,y, z) cos 2rc(ux + wz) exp 2z~i(vy)dV 

= Fv(~t,v, ~) , (1) 

where the origin is taken on the twofold axis. There- 
fore, Fv(u, v, w) is complex in respect to vy only, and 
may accordingly be expressed as 

Fv(u, v, w) = Fv(~t, v, fro =JR cos 2rffvy) +/fR sin 2zffvy) 
= Av + iBp, (2) 

where f a  is a real function of u, w, x and z. 
Then, in conformity with condition (2), the electron- 

density function, d(x,y,z),  of the structure runs, 

d(x,y,z)= ,~ {d~o(x,y,z),,r, ,5(z- z~,~)}, 
p = l  j 

where fi represents a delta function, zv,j the z coor- 
dinate of the j th  p-layer, and the asterisk stands for 
the convolution of the two functions on its both sides. 
The Fourier transform, F(u,v,w), of d(x,y,z)  is given 
by 

F(u,v,w)= ~ {Fv(u,v,w) 
p = l  

I XtS(z-z~, j )  exp 2rci(wz)dz}. (3) X 
d J 

A C 24B - I0"  
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If we normalize these 6 functions so that their peak 
values are all equal to 1, we can deduce the transform 
of their sum as follows, 

I f J ( z - z v , j ) e x p  2ni(wz)dz= 

27I J(z-zz,,j) exp 2ni(wz)dz = Z e x p  2ni(wzv,j) . (4) 
j d "  j 

Putting (4) in (3), we obtain for the case, w = l, 

F(u,v,l)= ~ {F~o(u,v,l) x 22exp 2ni(lz~,,~)}. (5) 
p = l  j 

Expressing the sum of exponential functions by ~ + iflv 
and using (2), we can rewrite the above equation as 

F(u,v,l)= ~ {(A~o+iB~)(o~+ifl~)} 
p----1 

r 

= 22{(Aloo~-Blofl~)+i(B~o~+Avfllo)}. (6) 
p----I 

Similarly, we obtain 

r(fi, v,i)= " Z {(Avo~+Bvfl~o)+i(Bz, o~v-Avfl~)}. (7) 
p = l  

If  the difference, D, of the squared absolute value of 
F(fi, v, i) from that of F(u, v, l) is taken, 

D = IF(u, v, l)12- IF(fi, v, i)1 z 

= ( ~: A : ~ -  -> B~p~)~+( ~: B : ~ +  _~ A~p~)2 
p----1 p----1 p----1 p----1 

- (  
p = l  p----I p----1 p----1 

= - 4  k 
p = l  q = l  p----I q = l  

= 4 ~ ~ A~Bq(o~qfl~o-apflq), (8) 
p----1 q----1 

and D is in general not zero. 
Now, we introduce condition (4). Since the thickness, 

tv, of the p-layer is an integral multiple of tx of the 
thinnest l-layer, the period of the structure perpendicu- 
lar to the layers must also be an integral multiple of 
the latter, and let the period be M x q, M being integral. 
Then, according to the equality, 

27 exp2ni l = 0 ,  (9) 
m ~ 0  

where / (50) ,  m and M are all integers, the relation 
holds: 

{( ~. 2; 2;exp2ni l z~,:+-~--~ - -0 .  (10) 
p = l  j no 

In equation (10), the origin of the structure is taken 
as coinciding with that of one of the thinnest layers, 
namely, on its twofold axis, and as will be recognized 
in Fig. 1, when tv = N~ x fi, n~ = 1,3, 5 , . . .  N v -  1 if the 

layer is of an even Nv, and nv = 0, 2, 4 , . . .  N v -  1 if the 
layer is of an odd Nv. 

The relation (10) is rewritten as, 

{ ( ",)} 27exp2ni(lzv,j)x Xexp2ni  _ + l ~ -  
p =  1 j n o 

= 27 { K v f e x  p 2ni(lzv,j)}=O, 
p = l  

where 

(11) 

K v=2 27 cos2n 
np~  l 

for an even Nv, and 

K ~ = l + 2  22 cos2n 
n p ~ 2  

for an odd Nv. In any case, the Kv's are all real and 
even functions of l. From (11) and because Kx=I ,  
therefore, the sum of the exponential terms for the 
thinnest l-layer is explicitly expressed by those for the 
other layers as 

o r  

2; exp 2ni(lzx,j)= - "Z {K~ 22 exp 2ni(lzv,j) } 
j p----2 j 

p ~ 2  

for positive l's and 

0cl- ifll = -- ~ K~(cx~- ifl~) 
p = 2  

for negative l's. 
Introduction of these relations into (8) produces no 

special result, D being not zero as before. However, 
in the case of r = 2, that is, if the structure is composed 
of two kinds of layer, one being an integral multiple, 
in thickness, of the other, the relation holds: 

~1 + i P l =  - K2(~2 + iP2), 

and accordingly 

~1 -~ - -  K 2 ~ 2  and fll = - -  K 2 f 1 2 .  

Putting these into (8), we derive 

D = 4K2(A1B2- A2B,)(~2P2- ~2P9 = 0; (12) 
i.e. 

IF(u, v, l)12-- IF(~, v, i)1 z , 

provided 15 0, which is prerequisite to the equality (9). 
On the other hand, when l=0 ,  we obtain from (5) 

F(u,v,O)= ~ Fv(u,v,O), 
p = l  

and since every F~o(u,v,l) and accordingly every 
Fv(u,v,O) is digonally symmetric with respect to the 
b* axis as seen from (1), we derive 

F(u,v, O)= F(5, v, O) 
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and accordingly 

IF(u,v,O)12= IF(~,v, O)l 2 . 

We thus arrive at the conclusion that, if a crystal 
structure is composed of two kinds of layer satisfying 
the conditions previously mentioned, the absolute 
values of its Fourier transform are digonally sym- 
metric with respect to the b* axis, though not every- 
where in reciprocal space but only in the set of parallel 
planes with integral w coordinates, while the phase 
angles are asymmetric everywhere as will be recognized 
from (6) and (7), both for the case in which r = 2. This 
means that the crystal, in spite of its triclinic symmetry, 
gives the hkl reflection and its counterpart, hk], always 
an equal intensity, thus producing the X-ray diffrac- 
tion pattern rigorously monoclinic in symmetry. 

The phenomenon described here is similar to those 
due to the Friedel law in the respect that, owing to 
the lack of information about the phase angle, the sym- 
metry of a crystal as deduced direct from ordinary dif- 
fraction experiments is sometimes higher than the true 
symmetry of the crystal. As more examples of a similar 
kind are expected to be discovered in future, it may 
be appropriate to specify them with a suitable name, 
and we propose the term diffraction enhancement of 
symmetry for the phenomenon that the X-ray diffrac- 
tion pattern of a crystal exhibits, besides the centro- 
symmetry due to the Friedel law, a symmetry higher 
than that of the crystal. 

Examples of diffraction enhancement 
among mica polytypes 

The structure of every mica polytype consists of mono- 
clinic unit-layers having the symmetry of 1 C2/m [nota- 

~--= ¢ sin P 10_~ 

b 

I I II I II II I 

(o) 

~oA ¢ sinl3 

b 

9'2 A ~ ~ ~ ~ ~ ~ - ~  

I I II I II II I 

(b) 

Fig. 2. (a) Fictitious 22-layer triclinic mica polytype to produce 
a monoclinic diffraction pattern. The diagram shows a 
Smith-Yoder  diagram projected along the a axis. Each 
segment of line starts from a potassium ion in a unit-layer 
and ends at another in the next unit-layer. I and II signify 
two kinds of layer. (b) Smith-Yoder  diagram of the ten- 
layer triclinic mica polytype 10To3 projected along the 
a axis. 

tion after A. Niggli (Wood, 1964)], the mode of stack- 
ing of the unit-layers varying from one polytype to 
another. In general the structure of a polytype 
contains such unit-layers arranged, though not neces- 
sarily successively to one another, after the manner of 
the layer-sequence in the one-layer monoclinic mica, 
1M (Smith & Yoder, 1956), and a series of these unit- 
layers will be called in this paper normal layers. The 
other layers in the structure, which owing to rotations 
about axes perpendicular to the layers, depart from 
the 1M sequence, will be named abnormal layers. 

Then, if the structure of a triclinic mica polytype 
with a metrically monoclinic crystal lattice comprises 
sets of unit-layers, all the sets being equal to one 
another in configuration, and each containing some 
abnormal layers and carrying in the middle a twofold 
rotation axis in the direction parallel to the b axis of 
the crystal, and if the rest of the structure is constituted 
solely with normal layers, the X-ray diffraction pattern 
given by this polytype is accurately monoclinic in sym- 
metry. In fact, if we designate the sets containing ab- 
normal layers digonal sets because of their twofold 
rotational symmetry, we can easily recognize that the 
origins of these digonal sets as well as those of normal 
layers in the polytype can be so chosen as to be located 
along a line parallel to the c axis. By denoting the elec- 
tron-density functions for a normal layer and a digonal 
set by dl(x,y,z) and dz(x,y,z) respectively, we shall see 
that the argument expounded in the foregoing section 
applies to this case. A fictitious example of such a 
polytype is illustrated in Fig.2(a) in a Smith-Yoder 
diagram projected along the a axis. 

Although an infinite number of triclinic mica poly- 
types satisfying the above conditions is conceivable, 
the only example so far brought to light experimentally 
is the one designated 10To3. This polytype discovered 
by Ross & Wones (1965) was described by them as a 
ten-layer monoclinic one from its X-ray diffraction pat- 
tern, but subsequent studies have disclosed that, though 
the symmetry of the pattern is indeed monoclinic, no 
sequence of layer-stacking in that symmetry satisfies 
the intensity distribution of the X-ray diffraction pat- 
tern, and the final structure deduced is a triclinic one 
as shown in Fig. 2(b) (Ross, Takeda & Wones, 1966). 
In fact, if the digonal sets are so chosen as indicated 
by II in the Figure, it will be obvious that this polytype 
produces a diffraction pattern which is rigorously 
monoclinic in symmetry. 

Quasi-enhancement 

If a triclinic mica polytype contains more than one 
kind of digonal set, i.e. consists of more than two kinds 
of layer including normal layers, equation (12) does 
not hold for this case and the symmetry of its diffrac- 
tion pattern should be true to that of the crystal, namely 
triclinic. However, even in this case, some polytypes 
may still give rise to diffraction patterns monoclinic 
in symmetry, even though not so accurately as before 
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yet certainly to a very good approximation. We shall 
call this case quasi-enhancement; we begin the discus- 
sion with some examples. 

Among eight-layer mica polytypes theoretically pre- 
dicted, there are some whose layer sequences are as 
given in Fig. 3(a). All of these polytypes comprise rota- 
tions of the unit-layers only by + 120 ° about the c* 
axis, and are triclinic. As recognized in the Figure, 
throughout these examples, there exist two kinds of 
digonal set, each having a configuration different from 
the other. In spite of this fact, however, calculations 
of their periodic intensity distribution functions (Take- 
da, 1967) suggested that every one of these should 
produce a diffraction pattern monoclinic in symmetry. 
In order to understand this situation, let us convert 
the unit-layer from the conventional one, which has 
its lateral dimension from one layer of alkali ions to 
another, to a new one from the middle of an octahedral 
layer to that of the next one. The new unit-layer thus 
chosen has a layer of alkali ions in the middle and 
those of octahedral cations on its both sides. The ad- 
vantage of assuming the unit-layer like this lies in the 
following two facts. Firstly, for the trioctahedral micas, 
it has been empirically established (Donnay, Donnay & 
Takeda, 1964) that atoms in this new unit-layer are 
arranged, to a very good approximation, after the di- 
trigonal symmetry of 1P31m [notation after A.Niggli, 
(Wood, 1964)]. Secondly, because of this choice of 
unit layer, if the structure of a polytype comprises, in 
the stacking of the conventional unit layers, only 
+ 120 ° rotations about the c* axis, it will be rede- 
scribed as a stacking of the new unit layers, all in 
parallel orientation but with translations of layers by 
-½a with respect to the neighbouring layers, where 
a is a vector representing a period along one of the 
three axes of the hexagonal mesh in the unit layer. In 
fact, this relation between layers greatly facilitates the 
deduction of information useful for the present pur- 
pose, and through this change of unit layers the Smith- 
Yoder diagrams in Fig. 3(a) stand as they are, provided 
the vectors be now reinterpreted as representing the 
translations of successive layers. 

Now, upon this change of unit layers, the structure 
of any one of those polytypes in Fig. 3(a) will be con- 
sidered as consisting of two kinds of layer, the two 
kinds nevertheless being identical with each other in 
structure as well as in thickness, one being shifted with 
respect to the other along the axis perpendicular to 
the direction of the stacking, as illustrated in Fig. 3(b). 
Note that in spite of the change of unit layers, we still 
keep the same axial setting as that of the one-layer 
monoclinic mica. With this axial setting, layers of one 
kind have no shift along the b axis. These layers are 
what  have been called normal layers in the previous 
section. Those of the other kind have their shift vectors 
of + lb .  Then, because each of these layers has a 
twofold rotation axis parallel to the b axis, the sym- 
metry of the diffraction pattern of any of these poly- 
types is monoclinic to the same extent of approxima- 

tion as the structure of the unit layer can be regarded 
as being of the ditrigonal symmetry 1P31m. 

It is interesting to know how many such polytypes 
giving quasi-enhancement are possible for a given total 
layer number for those polytypes which comprise rota- 
tions of the conventional unit-layers only by 0 ° and 
+ 120 ° about the c* axis. No such polytype is found 
among those with layer numbers less than six, one is 
found out of 39 possible seven-layer polytypes (ex- 
cluding those of enantiomorphic ones), 4 out of 94 
eight-layer ones, and 18 out of 572 ten-layer ones. 

Partial enhancement 

As mentioned at the beginning of this paper, the X-ray 
diffraction pattern of a crystal often bears, only in part, 
a symmetry higher than that of the crystal, and such 

~--~ c s in P , I O A ,  

b (1) f 
9 " 9 A  I I I ~ ]- 

.11 III 

(2) } I ~; I ; I - . . . . ~ ~  I ~ " ~  > " ~ " ~  
II III 

I I ~ ' ~ -  ~" '~  ~ ~ "" 
II III 

I] II Ill 

(a) 

~ csin 13 ,10A, 

b 

I I I ~ I ' II II I 

,2, I t  t 

(3) 

(4) 

(b) 

Fig.3. (a) Eight-layer triclinic mica polytypes theoretically 
predicted, in Smith-Yoder  diagrams projected along the 
a axes. These polytypes are composed of three kinds of 
layer I, II and III, but expected to show 'quasi-enhancement ' .  
(b) Structural schemes of the polytypes in Fig. 3(a) after the 
change of unit layers as described in the text. Note  that 
every one of these consists of two kinds of layer, one being 
shifted in the b direction from the other. The electron- 
density distribution and the origin of each of the layers I 
and II  in (1) are illustrated by a triangle and a cross respec- 
tively. 
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a case will be defined as partial enhancement. The re- 
flections displaying the higher symmetry are distributed 
in the pattern after a certain symmetry and are usually 
those in which one or more than one index is a mul- 
tiple of an integer. Foi: example, in the case of triclinic 
wollastonite, the hkl reflection, when k is even (a mul- 
tiple of 2), is equal in intensity to, and located sym- 
metrical against the hOl plane with, the (h+k)/2,[c,l 
reflection (Ito, 1950). 

Introductory remarks on partial enhancement have 
been published (Sadanaga, 1959, 1963) and the detailed 
theory will be treated shortly elsewhere. 
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A Simple Theory of the Off-Centre Displacement of Cations in Oetahedral Environments 
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Off-centre displacement occurs when the effective size of a cation B is such that the unstressed B-O 
bond length is less than 1/I/2 times the oxygen 'diameter'. Assuming that all interatomic forces are 
central, there is then, for a symmetrically placed cation, a tension in the O-B-O diameters and a com- 
pression in the O-O edges of the octahedron. Elementary Born-theory treatment shows that for an 
isolated octahedron the tension will be relaxed by off-centre displacement of B. The relaxation will be 
shared with the O-O edges, which are therefore elongated. Relaxation can affect one, two, or three 
O-B-O diameters simultaneously, with different consequences for the edge lengths. The character and 
magnitude of the relaxation are independent of the symmetry and the structure, depending only on the 
B displacement. Predictions have been verified by experimental evidence from the structures and lattice 
parameters of KNbO3 and NaNbO3. Quantitatively, the off-centring must be strongly influenced by 
polarization (involving non-central forces), which is also the means whereby effects within octahedra are 
communicated to their neighbours. Qualitatively, however, when the displacements are fairly small 
(as is true for Nb) the present description in terms of bond stresses is useful and allows predictions to 
be made. A further paper on thermal expansion is planned. 

Interest in the off-centre displacements of 'cations' in 
octahedra has been stimulated by their important role 
in ferroelectrics of the perovskite type. That the cause 
of the displacement is not specific to ferroelectrics, but 
is more generally rooted in crystal chemistry, is now 
recognized. It has been discussed by Orgel (1958), who 
showed that it depended on the effective radius (not 
the conventional ionic radius) of the cation B relative 
to that of oxygen. The present note derives the same 
conclusion in a slightly different way, which allows 
predictions to be made about the character of the octa- 
hedral distortion in relation to the type and magnitude 
of the off-centre displacement. 

The Born theory, in its simplest form, assumes that 
the equilibrium distance between two atoms depends 
only on the potential energies of their mutual attractive 

and repulsive forces, and that the equilibrium distance 
is that for which the force on either atom is zero, i.e. 
the bond is unstressed. In crystal structures (as distinct 
from diatomic molecules) this cannot be lrue. Consider 
the octahedron as an isolated unit (a reasonable next 
approximation). There are repulsions in each of the 
O-O edges, and these produce tensions in each of the 
diametral O-B-O links (Fig. 1). Hence, even for a 
central B atom, the B-O bonds are elongated beyond 
their 'unstressed' length (a length which cannot be 
derived directly from measured interatomic distances, 
since all of these represent more or less stressed con- 
ditions, but which is a useful concept in discussion). 

The O-O repulsions are partly electrostatic, partly 
of covalent origin. The ionic part varies slowly with 
O-O distance, but is always relatively weak. The co- 


